Back to Research
$ cat project_details.md

⚡ Project Pokédex - Where Data Meets Pocket Monsters

Advanced ML and Data Visualization with GCP

Project Overview:

Innovative data science exploration applying advanced ML and visualization techniques to Pokémon datasets using cutting-edge GCP technologies

GCP Components:

├── Vertex AI for ML model training

├── Google Colab for development environment

├── Python ecosystem for data processing

├── Matplotlib for data visualization

└── Looker Studio for interactive dashboards

Methodology:

├── OSINT data collection from multiple sources

├── Data cleaning and classification

├── Exploratory data analysis (EDA)

├── ML model training with Vertex AI

└── Interactive visualization creation

Key Features:

├── Predictive type classifications

├── Pattern recognition and trend analysis

├── Interactive dashboards

├── Advanced data visualizations

├── Auto ML training pipelines

└── Statistical analysis of Pokémon attributes

Technical Challenges:

├── Handling diverse Pokémon attributes

├── Multi-class type prediction

├── Creating interactive visualization techniques

├── Model optimization and tuning

├── Feature engineering for better predictions

└── Dashboard performance optimization

Key Insights:

├── Comprehensive understanding of Pokémon characteristics

├── Data-driven type predictions

├── Visual exploration of complex datasets

├── Correlation patterns between attributes

└── Evolution patterns and trends

Technologies Used:

Vertex AI, Auto ML, Google Colab, Python, Matplotlib, Looker Studio, Machine Learning, Data Visualization, Pandas, NumPy, Scikit-learn

$ cat architecture_diagram.png

Architecture Diagram:

Pokédex Data Analysis Architecture